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Abstract

In collaboration networks, synergies among team members play an important role
in team performance. At the same time, many teams feature hierarchical structures,
where some team members report to another with a higher level position. With mem-
bers having different responsibilities or playing different roles in a team, collaboration
patterns between team members organized in a hierarchy can have important implica-
tions for the team’s performance. Focusing on the hierarchical nature of collaboration
networks, this work is the first attempt to learn vector representations of teams based
on individual team members’ characteristics and how they are organized into a hier-
archical team. The proposed hierarchy2vec model first learns node embeddings via
hierarchically biased walks and then aggregates such node embeddings in a hierarchi-
cal way to generate the team’s vector representations. Experiments on a real-world
dataset for coaches in the National Football League (NFL) reveal that the proposed
model can achieve better results in team performance predictions.

1 Introduction

Teamwork is about collaboration, where individuals in a team work together to reach the
common goal with their own knowledge, skills, or expertise. Collaboration can boost work
productivity and improve team performance by overcoming the limited skillset of a solo team
[4, 8, 13]. For example, academic scholars with diverse disciplines, expertise, and background
collaborate with each other to solve interdisciplinary research questions. Such collaborations
can encourage intellectual stimulation by sharing the research perspectives from different
disciplines or broaden their insights through sharing different cultural backgrounds [22],
leading to high-quality research [1]. Beyond academic collaboration, companies interact and
cooperate with others, such as connecting with suppliers, partners, or providers that enable
access to various resources [25, 29, 36]. Such partnerships promote great synergy of firms
that leads to a high performance [10]. Back to the individual level, collaborations can also
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be observed in teams for online gaming [20], or sports [5] where players in the same team
collaborate to win games.

We can view these various collaborations from the network perspective because a better
understanding of network patterns associated with better team performance is valuable for
decision- or policy-making [11, 27, 33]. For example, a sports team can design a better lineup
of players for winning games [23] or a company can find the best hire for a project team [7]
for team success.

However, existing studies that predict team performance consider collaboration relation-
ships among team members as homogeneous when learning individual and team represen-
tations. This assumption is not true in real-world teams since there are both vertical and
horizontal relationships among team members [19]. In other words, hierarchical structures
are widely observed in collaborations. For example, leaders in teams usually have more
authority on decision-making and the responsibility of directing other team members [18].
Sometimes, a team can have more than one level of hierarchy. Since leaders play different
roles in teams, their ties with other members they lead should be treated differently than
ties among non-leading members.

Therefore, we propose an approach that captures the hierarchical relationships among
team members while preserving both individual team members’ characteristics and the hier-
archical collaboration structures in a team. Specifically, the hierarchy2vec model first learns
team embeddings that represent individual members in a team by hierarchy-aware walks and
then aggregates individuals’ embeddings in a hierarchical way into a team representation.
Learned team embeddings are then used as feature vectors to predict team performance.

We evaluated the proposed model using a dataset of coaches from the National Football
League (NFL). Each NFL team consists of multiple coaches with specific positions and is
organized into a 3-levels hierarchy (head coaches, coordinators, and position coaches), making
it an appropriate context to study team performance from the perspective of hierarchical
collaboration networks. Results demonstrated that team embeddings learned by our model
could better predict team performance than treating all team members and all collaboration
ties the same.

2 Related Work

2.1 Collaboration network analysis

Many studies have viewed team formations and collaborations from the network perspective.
Such collaboration networks can represent the inter-connectivity among interacting entities,
thus enabling extensive analyses. For instance, some studies generated academic collab-
oration networks among scholars to predict the future academic collaborations [3, 6] and
reveal the relationship between collaboration patterns and individual or team performance
[1, 24, 40]. One study analyzed business collaboration networks to discover the impact of
leadership distributions or divisions in a company’s teams on the team performance [27].
Another research explored the determinants of efficient decision-making in companies by
looking at the collaborative patterns found in collaboration networks [37].

Of particular interests are studies that focused on developing prediction models for team
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performance based on patterns in collaboration networks. Such studies used their own feature
sets that are associated with team performance to design the prediction models. Those
feature sets include dynamics of historical team performance, and collaborative patterns
appeared in collaboration networks [2], average and maximum of individual feature values
in a team that indicates the structural centrality and familiarity in networks [14].

However, these methods require manually engineering aggregated statistics of nodes or
networks to represent the whole team. Individual team members are treated as equally
important in the process, and dyadic connections between two team members are not con-
sidered.

2.2 Graph representation learning

2.2.1 Node embedding

In machine learning research, nodes in a network (a.k.a., graph) can be represented as low-
dimensional vectors that preserve its network properties, such that similar nodes have similar
representations [9, 39]. DeepWalk [30], node2vec [16], and struc2vec [31] are unsupervised
node embedding approaches, which uses the Skip-gram model to learn node embeddings
based on node sequences generated by random or biased walks in a graph [28].

Unlike unsupervised node embedding approaches, supervised node embedding approaches
use end-to-end deep architectures that are trained to maximize or minimize a specific ob-
jective. For instance, Graph Convolutional Network (GCN) [21], GraphSAGE [17], Graph
Attention Network [35] adopted the deep learning architectures and trained the node em-
beddings by aggregating the information gathered from the neighboring nodes and guiding
the model training by the node labels.

Nevertheless, these node representation learning methods do not explicitly consider the
heterogeneous ties that connect nodes at different levels of a hierarchy. While supervised
approaches can potentially learn the different roles of different collaboration ties, doing so
would require a large amount of training data, especially when the goal is to predict team
performance based on node embeddings instead of predicting node labels directly.

2.2.2 Representation learning for collaboration networks

Few studies learned node representations in collaboration networks. One study focused only
on collaborations as teams and learned the similar node embeddings if nodes have ever collab-
orated with each other in the past [38]. Another study focused on the magnitude of positive
or negative influence among team members and optimized the node embeddings by project-
ing nodes with stronger collaborative influence into closer vector space [32]. The study by
Gong et al. [15] is the only one that learns the representations of teams in collaboration net-
works for team performance prediction. They used the online gaming collaboration network
and learned the team embedding by aggregating the individual team member information
gathered from co-play gaming networks [34]. However, this study treated all team members
the same while aggregating the team member information, and the hierarchical structure in
teams has been ignored.

Thus, our work has two major contributions. First, we adopted a hierarchically biased
random walk to learn node embeddings in hierarchical teams. Second, we hierarchically
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aggregated node embeddings to learn team embeddings for team performance prediction.

3 Methods

3.1 Overview

The aim of the proposed hierarchy2vec model is to learn a vector representation for a hier-
archical team based on the collaboration network and predict the team’s performance. In
sum, hierarchy2vec consists of three steps:

(1) Construct a hierarchical collaboration network based on the hierarchical relationship
among members of teams.

(2) Generate node features by concatenating nodes’ individual feature and node embed-
dings learned via hierarchically biased walks on historical hierarchical collaboration networks.

(3) Aggregate node features in the same team in a hierarchical way and use an end-to-end
learning architecture to learn team representations and predict team performance.
Figure 1 illustrates the architecture of the model.

Figure 1: Overview of model architecture

3.2 Hierarchical collaboration networks

One input to the model is the cumulative collaboration network, which represents the hierar-
chical collaboration relationships among team members. In the network, nodes are individual
team members, such as scholars in an academic team or players in a sports team. While the
traditional way to represent relationships among members of the same team is to use a fully
connected network among team members, a hierarchical collaboration network has three
types of ties: (1) supervision ties represent “supervising” relationships, and point from a
member at a higher level in the hierarchy to other members that she supervises (e.g., from a
mentor to her apprentice); (2) reporting ties reflect “reporting to” or “working for” relation-
ships. For each supervision tie, there is a reporting tie that reciprocates its direction (e.g.,
going from a student to a faculty advisor); (3) peer ties exist between colleagues working for
the same supervisor, and such ties have no directions (e.g., between students working in the
same lab).
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Formally, a hierarchical collaboration network is defined as G = (V , E), where V is a set of
nodes representing individual team members and E is a set of edges representing the hierarchi-
cal collaboration ties in the same team. There are three types of edges, {E (S), E (R), E (P)} ∈ E ,
where E (S) is a set of supervision ties, E (R) is a set of reporting ties, and E (P) is a set of peer
ties.

3.3 Features

Node features include (1) Individual features that are relevant for team performance predic-
tion, such as expertise, skills, or previous performance; (2) Collaboration features are learned
from historical hierarchical collaboration networks. They are another important aspect that
could have predictive power for team performance since team members’ experience working
for prestigious or high-performing leaders has a great impact on individuals’ future career
[12, 26].

Therefore, we extract nodes’ collaboration features by learning from team members’ pre-
vious collaboration with others. This process starts with constructing a cumulative collabo-
ration network by combining hierarchical collaboration networks for teams assembled during
the training period. Figure 2 provides a simple example, where two teams’ hierarchical
networks are combined.

Figure 2: Generation of cumulative collaboration network

Then we extended the DeepWalk model [30] so that node similarities are learned with
hierarchies in mind. The vanilla DeepWalk model uses a random walk approach and sequen-
tially samples a node’s neighborhood to generate the “contexts” of nodes. In the context of
the collaboration network, the basic idea of DeepWalk is that individuals that have worked
in the same team are more likely to have similar embeddings than those who have not.

Unlike DeepWalk, the proposed hierarchy2vec model adopts a hierarchically biased walk
scheme to give different probabilities for the walk to traverse supervision, reporting, and
peer ties in a hierarchical collaboration network. For example, if a team member tends to
be influenced more by her supervisor than by her supervisees, then the walk should favor
reporting ties than supervision ties so that the member’s embedding is more similar to that
of her supervisor. In the example cumulative collaboration network in Figure 2, consider
that we are now at node C. The biased walk can decide the next node with the probability
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p for supervision (Nodes D and E), q for reporting (Node A), and 1− p− q for peer (Node
B) ties. Therefore, node C is likely to sample node A with the highest probability in case
of p ≤ 1− p− q ≤ q.

After generating node sequences with the hierarchically biased walk, SkipGram model
is then used to learn embeddings for all nodes (i.e., collaboration features) in the cumula-
tive hierarchical collaboration network. For each node, its collaboration features are then
concatenated with its individual feature to form its comprehensive set of node features.

3.4 Hierarchical node feature aggregation

After we generated node features, we aggregated the node features of individuals in the
same team to generate the team-level representations. Specifically, we aggregated the node
features in a hierarchical way, which gives the different importance to the nodes in each level
of hierarchy.

Out of a cumulative hierarchical collaboration network, team is represented by a subgraph
among its team members. Hierarchy2vec then learns the team’s embedding by aggregating
its team members’ node features. To capture the hierarchical structure within a team, the
hierarchy2vec model adopts a hierarchical way to aggregate node features in a bottom-up
fashion (i.e., along the direction of reporting ties). Specifically, the aggregation starts from
the lowest level of a team’s hierarchy. Node features of team members at this level are first
aggregated into one vector and then aggregated with their supervisor’s node features. This
process moves upward in the hierarchy until it reaches the top-most level. In the end, the
aggregated features at the top-level become the team embedding, which integrates individual
and collaboration features of all members in a team while giving higher weights to nodes
with upper-level positions.

More formally, in a team Tt with a set of nodes Nt, assume that the team has L hierarchy
levels. In the level l(1 ≤ l ≤ L), the hidden state of a node n ∈ Nt at the level l is
denoted as hl,n

t . This hidden state is the aggregated vector that combines the information
collected up to the node n’s apprentice nodes and the feature vector of the node itself.
The apprentice nodes’ information is aggregated by concatenating their hidden states if the
current computation level is greater than or equal to 3. If the current level is at 2, the
apprentice nodes are aggregated simply with the average of their feature vectors. Then, the
aggregated apprentice nodes is again concatenated with the current node feature vector and
assigned as a hidden state. This is formulated as follows:

hl,n
t =


[hl−1,c1

t ‖hl−1,c2
t ‖ . . . ‖hl−1,cn

t ‖f l,n
t ] ·W (l), {c1, c2, . . . , cn} ∈ N

(S)
t (n) if 3 ≤ l

[AV ERAGE(f 1,c
t )‖f l,n

t ] ·W (2), c ∈ N
(S)
t (n) if l = 2

where ‖ is the concatenation operator, hl,n
t is the hidden state of the node n in level l, f l,n

t

is the feature vector of the node n, W (l) is the transformation that hierarchically aggregates
the nodes at level l, and N

(S)
t (n) is a set of 7n’s neighbors connected by supervision ties.

In the end, the hidden state of the topmost node becomes the team embedding zt. Figure
3 illustrates the hierarchical aggregation of an example team with 8 nodes and 3 hierarchy
levels.
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Figure 3: Hierarchical aggregation of node features for team embedding

4 Experiments

4.1 Data

Our experiments are based on a dataset of coaches and teams in the National Football
League (NFL). We collected, cleaned and consolidated data from Pro Football Archives, Pro
Football Reference, Pro Football History, and Wikipedia pages.

For each team in each season between 2002 and 2019, we first collected the team’s per-
formance data in the form of the number of wins and losses during regular seasons (a to-
tal of 16 games). We then collected data for coaches who took qualified coaching roles
within each team during the 18 seasons. While there are many different types of roles
within the coaching staff of an NFL team, we focused on head coaches, coordinators for
offensive/defensive/special teams, and position coaches because these positions have clear
responsibilities and exist in most teams. More importantly, the hierarchical structure among
these coaches is very clear.

4.2 Network construction

A coaching team includes all coaches who worked for the same NFL team during a specific
season. In the NFL coach hierarchy, head coaches are at the top of the structure with the
greatest power and responsibility. At the second level of the hierarchy, defensive coordinators,
offensive coordinators, and special teams coordinators work directly under the head coach.
Each coordinator is responsible for one area of the team’s play. Position coaches are located
at the third level of the hierarchy. Each position coach is responsible for players at one
specific position on the field and reports to one coordinator. For example, a quarterback
coach is responsible for the play of quarterbacks on the field. Because quarterbacks are
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offensive players, a quarterback coach reports to the offensive coordinator, who is directly
supervised by the head coach. Figure 4 illustrates the hierarchical structure of a typical NFL
coach team based on coaches’ titles.

Figure 4: An illustration of NFL coach team structures.

Such three-level hierarchical structures allow us to construct a hierarchical collaboration
network with hierarchical relationships among coaches who served the same team in the
same season. In a graph G = (V , E), V is a set of nodes representing coaches who served
teams during 2002-2019 seasons and {E (S), E (R), E (P)} ∈ E is a set of edges representing
the hierarchical collaborations among coaches connected by supervision, reporting, and peer
ties. We represented each node as a tuple of serving year, serving team, and coach name
(y, t, c) ∈ V , which is a coach c who served a team t in year y. Each node has features
represented as a vector fy,t,c. The supervision edges E (S) includes edges from a head coach
to coordinators and from coordinators to their position coaches, the reporting edges E (R)

are the reciprocal direction of the supervision edges, and the peer edges E (P) are connected
among coordinators and among position coaches in the same group. Therefore, a connected
component in the NFL coach collaboration network is a team Ty,t consisted of coaches who
worked at NFL team t in year y.

4.3 Experiment design

An NFL team’s performance in a season can be measured in different ways. For example,
a successful season can be defined as winning the Super Bowl, qualifying for play-offs, or
records in the regular seasons. Given the complexity in defining a success, we experimented
on predicting failures. We defined the team’s season to be a failure if the team failed to win
50% of its regular season game or the head coach was fired in the middle of the season. To
predict team failures in year y, we learned coach features using the data up to year y − 1.
For training our models, we split the 18 years of NFL dataset into training (seasons between
2002 and 2015), validation (seasons in 2016 and 2017), and test (seasons in 2018 and 2019)
sets. Table 1 shows the statistics of training, validation, and test collaboration networks.

We experimented on the following feature sets to illustrate the performance of hierar-
chy2vec.

• Feature set 1: Individual features
• Feature set 2: Individual features + Collaboration features (DeepWalk)
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Table 1: NFL collaboration network statistics

Training Validation Test
Number of coaching teams 448 64 64

Number of coaching teams with failures 196 27 33
Number of nodes 5,493 806 804
Number of edges 6,817 1,065 1,154

• Feature set 3: Individual features + Collaboration features (Hierarchical walk)

For each coach, individual features include the total years he coached in the NFL (as a
measure of experience) and recent winning percentages in the NFL (as an indicator of his
recent performance). Since we valued the overall and best performance, we used the average
and the highest winning percentages during the recent 5 years of each coach’s NFL coaching
career.

Recall that collaboration features are node embeddings from the hierarchical collabora-
tion network. When learning node embeddings using hierarchy2vec’s hierarchically biased
walk (Feature set 3), we set the different probabilities for traversing supervision, peer, and
reporting edges with the probability ratio of 1:3:5. As a comparison, we also included em-
beddings learned with the random walk as in DeepWalk. For both types of the walk, we
used the window size of 7, walk length of 10, 100 epochs, and embedding size of 30. The
hyper-parameters are selected by searching for the best performing set near the values that
are used in DeepWalk paper [30].

In order to evaluate the contribution of hierarch2vec’s hierarchical aggregation of node
features, we included a baseline non-hierarchical model, which does not consider the hierarchy
structures in teams. Specifically, given a team Tt with N team members, a matrix of node
features is Ft ∈ RN×f , where f is the dimension of node features, the non-hierarchical
aggregation generates a team embedding zt of team Tt as follows:

F̃t = AV ERAGE(Ft)

zt = F̃tW
(1),

where F̃t ∈ R1×f , W (1) ∈ Rf×d, and zt ∈ R1×d with the pre-defined team embedding size
d. In sum, the non-hierarchical approach first averages all node features; then, we used
a fully connected neural network layer that transforms the averaged node features into a
lower-dimensional vector space of size d.

While training the hierarchical aggregation model, we used d = 16 as the team embedding
size. We used the early stopping strategy to stop training when the validation loss does not
decrease for 50 epochs to prevent model overfitting. We optimized the model parameters
using binary cross-entropy loss.

4.4 Results

We used Area Under the Curve (AUC) as the performance evaluation metric. Since exploring
the optimized model parameters depends on the initial settings, we used 10 different random
seeds for setting the randomized initial parameters for all models and reported the averaged
AUCs over 10 repeated training.
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Table 2 compares test AUCs of models with three feature sets as inputs and using non-
hierarchical and hierarchical feature aggregations. The hierarchical aggregation model with
Feature set 3, i.e., hierarchy2vec, achieves the highest AUC (Test AUC = 0.653). When
comparing models in the same column, we can see that collaboration features generated by
the proposed hierarchically biased walk outperforms DeepWalk’s random walk. In addition,
hierarchical aggregation works better than non-hierarchical aggregation, no matter which
feature set is used. All these improvements are statistically significant with p-values below
0.05.

Table 2: Model comparisons

Non-hierarchical aggregation Hierarchical aggregation

Feature set 1 0.572 0.631

Feature set 2 (DeepWalk) 0.585 0.597

Feature set 3 (Hierarchical walk) 0.600 0.653

5 Summary

This paper proposed hierarchy2vec, a graph representation learning model designed for teams
with hierarchical structures. The model consists of two major modules: a node embedding
learning module that leverages hierarchically biased walk in hierarchical collaboration net-
works, and an end-to-end team embedding learning model that aggregates node features in
a hierarchical way.

Through experiments on predicting NFL coaching teams’ performance, we demonstrated
the superior performance of hierarchy2vec, as well as the unique contribution of its two
modules. The results suggest that beyond individual members’ prior experience and perfor-
mance, how a team is assembled also matters to predicting its performance. Moreover, when
predicting a team’s performance, one needs to consider the hierarchical structure within the
team, and pay more attention to the value of those holding higher level positions. We hope
our findings can have implications for managerial decisions on how to create high-performing
teams.

This study also has limitations that we plan to address in future research. First, the
experiment is limited to NFL because the three-level hierarchy in coaching teams is clearly
defined. Using data from another domain would help the generalizability. Second, as a
robustness check, we will also vary model parameters and experiment settings. Third, ties
in hierarchical collaboration networks are unweighted. It would be interesting to see if a
specific weighting scheme (e.g., by collaboration frequency or recency) can further improve
the performance of hierarchy2vec. Last, but not least, the goal of this paper is to demonstrate
the value of a team’s hierarchical structures in predicting the team’s performance. If the
objective is to achieve the best predictions for NFL teams, a model needs to consider many
other factors beyond coaching teams, such as the abilities of and the “chemistry” among
players.
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learning link prediction approach for academic collaboration recommendation. In Pro-
ceedings of the fourth ACM conference on Recommender systems, RecSys ’10, pages
253–256, New York, NY, USA, September 2010. Association for Computing Machinery.

[7] A G Biichner, W Dubitzky, A Schuster, P Lopes, P G O’Doneghue, J G Hughes, D A
Bell, K Adamson, J A White, JoM C C Andersonv, and M D Mulvenna. Corporate
Evidential Decision Making in Performance Prediction Domains. page 8, 1997.

[8] Vicente P. Guerrero Bote, Carlos Olmeda-Gómez, and Félix de Moya-Anegón. Quan-
tifying the benefits of international scientific collaboration. Journal of the American
Society for Information Science and Technology, 64(2):392–404, 2013.

[9] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A Comprehensive
Survey of Graph Embedding: Problems, Techniques, and Applications. IEEE Transac-
tions on Knowledge and Data Engineering, 30(9):1616–1637, September 2018.

[10] Mei Cao and Qingyu Zhang. Supply chain collaboration: Impact on collaborative advan-
tage and firm performance. Journal of Operations Management, 29(3):163–180, 2011.

[11] Amar Dhand, Douglas A. Luke, Bobbi J. Carothers, and Bradley A. Evanoff. Academic
Cross-Pollination: The Role of Disciplinary Affiliation in Research Collaboration. PLOS
ONE, 11(1):e0145916, January 2016.

[12] Andrew Fast and David Jensen. The NFL Coaching Network: Analysis of the So-
cial Network among Professional Football Coaches. AAAI Fall Symposium - Technical
Report, page 8.

11



[13] Lori Fewster-Thuente and Barbara Velsor-Friedrich. Interdisciplinary Collaboration for
Healthcare Professionals. Nursing Administration Quarterly, 32(1):40–48, January 2008.

[14] Fahimeh Ghasemian, Kamran Zamanifar, Nasser Ghasem-Aqaee, and Noshir Contrac-
tor. Toward a better scientific collaboration success prediction model through the feature
space expansion. Scientometrics, 108(2):777–801, August 2016.

[15] Linxia Gong, Xiaochuan Feng, Dezhi Ye, Hao Li, Runze Wu, Jianrong Tao, Changjie
Fan, and Peng Cui. OptMatch: Optimized Matchmaking via Modeling the High-Order
Interactions on the Arena. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’20, pages 2300–2310, New
York, NY, USA, August 2020. Association for Computing Machinery.

[16] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’16, New York, NY, USA, August 2016. Association for
Computing Machinery.

[17] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, pages 1025–1035, Red Hook, NY, USA, December 2017.

[18] Julia E. Hoch and Steve W. J. Kozlowski. Leading virtual teams: Hierarchical leader-
ship, structural supports, and shared team leadership. Journal of Applied Psychology,
99(3):390–403, 2014.

[19] Kyujin Jung and Minsun Song. Linking emergency management networks to disaster
resilience: bonding and bridging strategy in hierarchical or horizontal collaboration
networks. Quality & Quantity, 49(4):1465–1483, July 2015.

[20] Elizabeth Keating and Chiho Sunakawa. Participation cues: Coordinating activity and
collaboration in complex online gaming worlds. Language in Society, 39(3):331–356,
2010.

[21] Thomas N Kipf and Max Welling. Semi-supervised Classification with Graph Convolu-
tional Networks. 2017.

[22] Jenny M. Lewis, Sandy Ross, and Thomas Holden. The how and why of academic collab-
oration: disciplinary differences and policy implications. Higher Education, 64(5):693–
708, November 2012.

[23] Yongjun Li, Lizheng Wang, and Feng Li. A data-driven prediction approach for sports
team performance and its application to National Basketball Association. Omega,
98:102123, January 2021.

[24] Chien Hsiang Liao. How to improve research quality? Examining the impacts of col-
laboration intensity and member diversity in collaboration networks. Scientometrics,
86(3):747–761, November 2010.

12



[25] Jukka Majava, Ville Isoherranen, and Pekka Kess. Business Collaboration Concepts
and Implications for Companies. International Journal of Synergy and Research, 2(1-
2), 2013.

[26] Bryan A McCullick, Jeremy Elliott, and Paul G Schempp. An analysis of National
Football League coaching trees and the network they comprise. International Journal
of Sports Science & Coaching, 11(1):4–15, February 2016.

[27] Ajay Mehra, Brett R. Smith, Andrea L. Dixon, and Bruce Robertson. Distributed
leadership in teams: The network of leadership perceptions and team performance. The
Leadership Quarterly, 17(3):232–245, June 2006.

[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space. January 2013.

[29] Buraj Patrakosol and David L. Olson. How interfirm collaboration benefits IT innova-
tion. Information & Management, 44(1):53–62, January 2007.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’14, pages 701–710, New York, NY, USA,
August 2014. Association for Computing Machinery.

[31] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. struc2vec:
Learning Node Representations from Structural Identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’17, pages 385–394, New York, NY, USA, August 2017. Association for Computing
Machinery.

[32] Anna Sapienza, Palash Goyal, and Emilio Ferrara. Deep Neural Networks for Optimal
Team Composition. Frontiers in Big Data, 2, 2019.
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