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Abstract

Social networks often incorporate multiple types of social relationships, making
them multi-relational networks. Effective link predictions can help social networks
improve user experience and engagement, but limited attention has been paid to pre-
dicting links in multi-relational networks. This paper explores link predictions in multi-
relational networks from an online health community. We demonstrate that leveraging
information from multiple networks built based on different types of relationships is
superior to using only information from a single network or the aggregated network.
In addition, adding community structures, nodal similarities based on network embed-
ding and topic similarity can help link predictions in different ways. Our work has
implications for the design and management of a successful online health community.
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1 Introduction

Online health communities (OHCs) enable social networking among those with similar health con-
cerns to get social support and helpful information [11]. Such online social networks often offer
various types of communication channels to facilitate user interactions. For example, a messaging
channel allows individuals to send direct messages in a one-to-one fashion, whereas in a discussion
channel, users post content and reply to others’ posts in public communications.

Meanwhile, such online social networks grow over time as more connections are created among
the users. Based on the information from the current network, link predictions can detect the
features of observed network ties and infer to where future ties would form [7]. Effective predictions
of future social network connections can help an OHC build recommender systems. Such systems
can help users find those that deem interesting and thus keep them engaged in the community,
which is one of the keys for a successful OHC [17].



In our study, we use data from a popular OHC for smoking cessation, BecomeAnEx. This
OHC provides four types of communication channels—blogs&comments, group discussions, message
boards, and private messages. For each of these channels, we construct one network based on users’
interactions through that channel. Thus the four networks, one for each channel, constitute a multi-
relational network, where the same set of nodes are connected by edges that represent different
types of relationships [16, 18]. Potential interconnections among different types of relationships in
a multi-relational network may have made it more complicated to predict links in such a network.
At the same time, a multi-relational network also offers opportunities to leverage more fine-grained
information from different types of relationships for link predictions, because users’ interactions
via one type of relationship may affect link formations based on another type. Nevertheless, the
majority of existing link prediction methods do not take advantages of these dependencies into
consideration [8].

Specifically, we propose a supervised link prediction approach for multi-relational networks
in an OHC. We investigate the value of utilizing different types of edges in a multi-relational
network. Moreover, our approach also incorporates community structures, nodal similarities based
on network embeddings, as well as textual similarities.

2 Related Work

Davis et al. (2011) [6] proposed a link prediction method for heterogeneous networks, which
have different types of nodes and edges. Their approach is based on enumerate patterns of the
existence and absence of different types of edges in triads. However, due to its computational
complexity, the approach can hardly be adopted for multi-relational networks with more than 3
types of relationships.

Inspired by the idea that homogeneous networks may contain multi-relational information,
Wang et al. proposed an approach of constructing a weighted network that contains heterogeneity
information [15]. They constructed a multi-relational network applying Edge Clustering[14], which
clusters edges to maximize the modularity of the network. The resulting top eigenvectors of the
modularity matrix were adopted as the social features for each node. Cosine similarities between
the social features for node pairs are computed which are assigned as edge weights and this weighted
network is used in supervised link prediction. Though their approach is generally applicable to any
network, multi-relational information cannot be adopted into this approach.

3 Data and Setup

3.1 Data Source

The dataset for this paper comes from BecomeAnEx, one of the most popular OHCs for smoking
cessation. The data includes users’ online interactions for 6 years, from 2010 to 2015. Users’
interactions occurred in four communication channels: blogs&comments (BC), group discussions
(GD), message boards (MB), and private messages (PM). In our networks, nodes denote users of
the OHC and edges indicate the interactions between users. Our multi-relational network consists
of four networks among the same set of nodes, one for each communication channel. In BC and GD,
one user publishes a blog post or start a discussion thread, then other users then post comments to
the blog post or thread that they are interested in participating. For these two channels, we created
a link between the user who published the blog post or started the discussion thread and those
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Figure 1: Four communication channels in BecomeAnkEx

who replied. In the MB channel, one user can post a public message on another user’s message
board, which is similar to a Facebook wall. In this case, posting such a message creates a link
between the owner of the wall and the user who posted to the wall. For the PM channel, which
represents one-to-one communication, if a user sends a private message to another user and receives
a message back from the user, a link is formed. Since administrators and senior members of OHC
often send welcome or greeting messages, which are often not reciprocated, we establish a link
between two users only if the communications between two users are reciprocal. Figure 1 depicts
how we constructed networks from our data.

Though our networks have directed links among users, we considered it as an undirected network
and for our link prediction problem as undirected because when it comes to social support, both
seeker and providers can benefit from such activities. Also, we did not consider the weight of the
edges.

We selected 52 consecutive weeks of user interactions, from week 50 to week 101, when users
were most active during the time span of our dataset. For instance, four initial networks, G pcso,
Gapso, Greso, and Gpyysg are constructed based on users’ activities during week 50. In addition,
we also constructed an aggregated network G agaso that aggregates all of the user interactions
across the four channels—as long as two nodes are connected in one of the four networks, they are
connected in the aggregated network. Table 1 shows the statistics of the five networks mentioned
above.

Table 1: Network statistics of each channel

Network property Ggc Gap GuB Gpm Gaca
Number of nodes 16114 2246 3988 497 20096
Number of edges 98518 3254 | 13079 971 115084

Average degree 12.228 | 2.898 | 6.559 | 3.907 | 11.453
Maximum degree 8334 162 778 100 9032
Degree standard deviation 100.946 | 6.041 | 31.648 | 8.866 | 103.079
Clustering coefficient 0 0 0.203 | 0.149 0.518
Number of connected components 16 47 24 39 51
Assortativity -0.212 | -0.140 | -0.358 | -0.208 | -0.218

8The graphs are constructed with the user interactions that occurred anytime
during the weeks from 50 to 101.
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Figure 2: Description of training and testing set construction

3.2 Setup

We set up the link prediction on a weekly basis—predicting if two currently disconnected nodes will
form a new tie during the next week based on what is observed during the current week. To make
the dataset more balanced, we only included node pairs (i.e., instances) that are two hops away in
the aggregated network during training week ¢, Gaga.¢- Labels of a training instance were set to 1
if the two corresponding nodes form a new tie during the week ¢t 4+ 1 in Gagg.t+1, and 0 otherwise.
Features for the training set were extracted based on networks at week t. Networks for generating
features vary with respect to which set of features we are using, to be discussed later in section 4.
A similar approach was used to generate the testing set of week ¢. Instances are two-hop node
pairs in the aggregated network constructed for a week t + 1, Gagg.t+1, excluding those that are
already connected in the aggregated network of the week ¢, G g4gg.i. Testing set features were based
on the snapshot of the networks in week ¢ + 1, again networks used to generate features vary across
different feature set we use. The testing set labels were based on tie formation during the week
t+ 2 in Gagg¢+2- In summary, we are using the user interaction in one or more channels in the
OHC, and utilizing the information to predict net pair of users that would interact in any of the
channels in OHC in the following week. Figure 2 describes the data construction procedure.

4 Method

4.1 Baselines

The 3 baseline features that we used in this experiment all attempt to capture proximity between
nodes and have been widely adopted in the link prediction literature. Jaccard coefficient (JC)
captures the number of common neighbors of two nodes divided by the number of total neighbors
of the two nodes. Preferential attachment (PA) uses the degree multiplication of two nodes as the
similarity value of two nodes. Adamic Adar (AA) holds the summation of the inverse-log degree of
common neighbors of two by assigning more weights to the neighbors with a lower degree.

4.2 Multi-Relational Link Prediction

The baseline model for our experiments does not consider a social network as multi-relational and
thus extracts the 3 baseline features for the aggregated network only, yielding feature set Fagg. We
propose a multi-relational link prediction (MRLP) approach. It considers nodal proximity across
the four networks and extracts the 3 baseline features for each of the communication channels,
yielding feature set Farr, that consists of Fgc, Fop, Fre, Fpa generated from Ggo, Gap, Gy,
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Gpur, and G agg respectively. This adjustment in generating features for a multi-relational network
makes it feasible for classifiers to learn characteristics of nodal proximity from each channel and
leverage information from different types of edges.

4.3 Adding More Features

In addition to the 3 baseline features, we also introduce additional features, namely community-
based features, embedding-similarity features, and text-similarity features, and evaluate if they
improve the link prediction performance for the OHC.

4.3.1 Community-Based Feature

Community-based features capture if two nodes belong to the same network community. This
is based on the assumption that nodes in the same network community have a higher chance of
interacting with each other. Among several community detection algorithms, we selected two com-
putationally efficient algorithms where the number of communities is determined by the algorithm.
For each algorithm, we generated a binary feature for each pair of nodes to indicate if the two are
in the same network community. We denoted the feature set that includes community-based binary
features generated on each communication channel as Fooay.

The community detection algorithm based on modularity maximization (CM) is proposed by
Clauset et al. [3]. We used C;, 1 < i < ke, to denote kops number of communities detected by
this algorithm. If nodes x and y are in the same community Cj;, the similarity between x and y is
set to 1, and 0 otherwise.

)L ifx,yeCi, (1<i<kcn) (1)
Say 0, otherwise

The other community detection algorithm we used is based on label propagation (C'LP) which
is proposed by Cordasco and Gargano [4]. In this algorithm, each node is initialized with a unique
community, and in each iteration, each node is combined with the nodes with the majority of
neighborhood communities. The membership of a node is updated to that of its neighboring
node randomly if no community dominates the others. The number of communities, kcrp, is also
determined by the algorithm. The notion of similarity is the same as the C'M mentioned above:
{1, if x,y € C}, (1 <1< kCLP)
by — - (2)

0, otherwise

4.3.2 Embedding-Similarity Feature

Network embedding learns vector representations of nodes in the networks [5]. The learned rep-
resentations can reflect the structural and neighborhood properties of each node of the network.
With such vector representations, similarity can be calculated between each pair of nodes. Among
several ways of generating network embedding, we applied DeepWalk (Perozzi et al., 2014) [13].
DeepWalk incorporates the language modeling scheme to the network, considering each node as
a word in a corpus. In the language modeling using skip-gram model, it maximizes the probability
of having the next word in a corpus, given the sequence of previous words. Likewise, in DeepWalk,
it first performs a series of random walks from a source node to produce a sequence of nodes.
Then, it maximizes the probability of predicting the next node, given the previous nodes generated



by the random walks. Therefore, the learned vector representations of the nodes can obtain the
neighborhood information by randomly searching for adjacent nodes.

For the parameters used in DeepWalk algorithm, we followed the experiment settings described
in the work of Perozzi et al. [13] across all of our experiments to ensure the fair comparison and
decent performances. Given a graph, we generated a sequence of random walks having the length of
40 walks for each source node, and we picked 128 to be the size of embedding vectors. We repeated
the walks 80 times at the starting of each node. Using a sliding context size of 21, we applied
the skip-gram model that maximizes the likelihood of predicting the next coming nodes, given the
previous node in the context. Once we obtained the final vector representations with size 128 for all
the nodes in the graph using DeepWalk algorithm, we then computed cosine similarities for every
node pair. Specifically, given a node pair x and y, we learned the vector representations V, and Vj,
for the nodes and computed the cosine similarity. The feature set based on the embedding-similarity
features for each channel is denoted as FgpB.

Say = cos(Vy, V) (3)

4.3.3 Text-Similarity Feature

Users who care about similar topics in an OHC may have a higher chance of interacting with each
other. Thus we calculated textual similarity among users’ posts as a measure of nodal similarity.
Specifically, we combined all the posts during the 50 week period across different channels except
for PM since the contents of private messages were excluded from this study for privacy concerns.
Texts were pre-processed by removing the stop words, lemmatizing, and stemming. Then, we
applied the latent Dirichlet allocation (LDA) [1] with 30 topics to model the topic distribution of
each post. Note that our focus is topical similarity, which is usually robust against the choice of
the number of topics.

For post n published by user ¢ in channel j, during week ¢, its topic distribution is denoted as
T;j¢. Since our prediction is on a weekly basis, to represent the topic distribution of each user in
a specific channel, we averaged the topic distributions of the user’s posts during the corresponding
week and via the channel.

Then, we computed the cosine similarity between the averaged topic distributions for a pair
of the user to get text-based nodal similarity. In this way, if the averaged topic distributions of
the posts are similar in the same week and the same channel, we regarded that the two users are
interested in a similar topic, yielding a high similarity. The text-similarity for nodes x and y can
be computed as follows:

(4)

n

T

Sxy = COS(Az,Ay)’ where A; = @
n

We used feature set Frgx to represent text-similarity features based on each channel.

5 Results

We evaluated four different classifiers to compare the performance of the different models and
different feature sets. Note that we did not tune parameters of classifiers for each set of features
since our goal is to compare the predictive power of different models and feature sets rather than
to optimizing link predictions. We used the default parameter settings from [12] for the random
forest, logistic regression, and AdaBoost in classification. Neural network was trained with one



hidden layer with 32 neurons on the dataset using mini-batch gradient descent with a batch size of
20 for ten epochs by setting aside 20 percent of the data per epoch [2].

Classification results were then evaluated with precision and precision@QK as our goal is to
recommend top future links with high accuracies instead of recovering all future links. We also
included normalized discounted cumulative gain (nDCG) as an evaluation measure as it is also
important to rank links that occurred higher than those that did not occur.

Link prediction results on baseline model and MRLP, both with 3 baseline features, is summa-
rized in Table 2. Each value in the table is the average of the prediction results across 50 weeks
of the dataset, where the values in bold denote the best performer for each evaluation metric. It
is clear that MRLP performs better than other baseline approaches: its precision, precision@10,
and precision@20 are 25%, 2%, and 20% better than the best performing baseline model, respec-
tively. Its nDCG@10 and nDCG@20 are 10%, and 15% better than the best performing baseline
model respectively. In other words, considering each network works better than considering a single
network or aggregating these networks into one.

Table 3 illustrates the value of additional features in our multi-relational link prediction ap-
proach. The values in the table are the averaged performance across all 50 weeks, as in the previous
table. Across all evaluation metrics, MRLP + Fgjp performs the best among the additional fea-
tures, outperforming MRLP. The precision, precision@10, and precision@20 are 34%, 26%, and
11% higher in MRLP + Fgjp than MRLP respectively. The nDCG@10 and nDCG@20 for MRLP

Table 2: Results for Baseline vs. MRLP

. . Baseline Approach MRLP
Metric Classifier Face | Foc | Fop | Fus | Foar Fiis
Random Forest 0.019 | 0.001 | 0.001 | 0.063 | 0.032 | 0.055

Precision Logistic Regression | 0.071 | 0.000 | 0.029 | 0.093 | 0.031 | 0.116

AdaBoost 0.080 | 0.000 | 0.001 | 0.048 | 0.005 | 0.101

Neural Network 0.007 | 0.000 | 0.000 | 0.000 | 0.011 | 0.030

Random Forest 0.022 | 0.004 | 0.006 | 0.056 | 0.030 | 0.040

PREC@10 Logistic Regression | 0.136 | 0.000 | 0.051 | 0.168 | 0.064 | 0.168
AdaBoost 0.102 | 0.004 | 0.006 | 0.144 | 0.026 | 0.184

Neural Network 0.128 | 0.000 | 0.012 | 0.180 | 0.058 | 0.172

Random Forest 0.020 | 0.003 | 0.009 | 0.054 | 0.033 | 0.039

LDCG@10 Logistic Regression | 0.127 | 0.000 | 0.045 | 0.170 | 0.079 | 0.156
AdaBoost 0.110 | 0.003 | 0.007 | 0.155 | 0.026 | 0.197

Neural Network 0.126 | 0.000 | 0.013 | 0.179 | 0.066 | 0.178

Random Forest 0.019 | 0.002 | 0.012 | 0.060 | 0.025 | 0.046

PREC@20 Logistic Regression | 0.102 | 0.002 | 0.047 | 0.144 | 0.068 | 0.160
AdaBoost 0.088 | 0.004 | 0.011 | 0.130 | 0.020 | 0.169

Neural Network 0.106 | 0.000 | 0.028 | 0.160 | 0.057 | 0.192

Random Forest 0.019 | 0.002 | 0.012 | 0.058 | 0.029 | 0.043

2DCG@20 Logistic Regression | 0.106 | 0.001 | 0.044 | 0.153 | 0.077 | 0.155
AdaBoost 0.097 | 0.003 | 0.010 | 0.142 | 0.022 | 0.181

Neural Network 0.112 | 0.000 | 0.024 | 0.166 | 0.063 | 0.191

#Values that are in bold denote the largest value for each evaluation metric.



+ Fgpyp are 23% and 18% better than MRLP. These results indicate that incorporating the em-
bedding features in addition to the base features in MRLP improved the prediction power of the
classifiers. MRLP + Fgoar also achieved increased performance compared to MRLP across all
evaluation metrics.

Table 3: Performance of additional features on MRLP

Metric Classifier MRLP MRLP-+More Feature Sets
Farr Fare
Fars Farr Farr Farr +Feonr +Fcom
+Ftcom | +FemB | HFrEX LR +FemB
EMB
+Frex
Random Forest 0.055 0.035 0.050 0.030 0.043 0.056
Precision Logistic Regression | 0.116 0.101 0.136 0.102 0.123 0.122
AdaBoost 0.101 0.148 0.155 0.122 0.143 0.136
Neural Network 0.030 0.029 0.050 0.013 0.043 0.085
Random Forest 0.040 0.040 0.048 0.048 0.040 0.044
Logistic Regression 0.168 0.192 0.140 0.168 0.164 0.188
PREC@10 AdaBoost 0.184 0.194 0.162 0.144 0.136 0.138
Neural Network 0.172 0.160 0.232 0.164 0.184 0.168
Random Forest 0.039 0.040 0.052 0.051 0.041 0.045
ADCCGE10 Logistic Regression | 0.156 0.189 0.139 0.158 0.157 0.183
AdaBoost 0.197 0.206 0.177 0.143 0.142 0.143
Neural Network 0.178 0.165 0.243 0.166 0.184 0.172
Random Forest 0.046 0.041 0.049 0.053 0.039 0.047
Logistic Regression 0.160 0.198 0.166 0.148 0.194 0.156
PREC@20 AdaBoost 0.169 0.152 0.150 0.137 0.144 0.144
Neural Network 0.192 0.158 0.214 0.186 0.170 0.150
Random Forest 0.043 0.041 0.051 0.054 0.040 0.047
Logistic Regression | 0.155 0.195 0.158 0.148 0.181 0.162
nbCGa20 AdaBoost 0.181 0.171 0.163 0.139 0.147 0.146
Neural Network 0.191 0.163 0.226 0.180 0.175 0.158

&Values that are in bold denote the largest value for each evaluation metric.

6 Conclusions and Future Work

In this paper, we proposed an approach for supervised link prediction problem in a multi-relational
network from an OHC. Overall, the results show that considering different types of relationships in
a multi-relational social network can improve the performance of link predictions in this context. In
addition, we showed that community structures, as well as nodal similarities based on embedding,
could further enhance the performance of our prediction.

The results have important implications for the design and management of an OHC. An OHC
can develop a recommender system that recommends contents to users so that they read others’ blog
posts or participate in group discussions. The OHC design may even be improved by recommending



friends so that users would be able to access other users’ wall or even let users send direct messages
to each other if they belong to the same community. The more the users get connected within the
community, the richer the information they would share and receive from each other. As other
OHC related studies show that better engagement of users in OHC helps them to achieve their
goals, such as reduce weight [9], recover their symptoms [11], or quit smoking [10], we expect these
recommendations would help people at BAX to quit smoking.

Similar logic applies to users that have high nodal similarity based on the result of embedding.
The users that have high similarity score in embedding may have similar characteristic but would
have been detected for different communities. By allowing these users to communicate with each
other in one of the four channels, users may benefit from each other by receiving information outside
of the community. Having this functionality in OHC would possibly lead to a more interconnected
network that is desirable since each user would be exposed to the breadth of information.

There are also interesting future research directions. For example, all of the experiments are
based on undirected and unweighted networks. In the future, we may experiment with direc-
tionality between users and the frequency of the user interaction as to their implications in link
prediction. Moreover, we plan to apply our methods to networks in other domains to see if our
method generalizes to other networks.
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