INFORMS Data Science Workshop, 2021

Hierarchy2vec: Representation Learning in Hierarchical Collaboration Networks for Team Performance Prediction

Sulyun Lee¹ and Kang Zhao²

- ¹ Interdisciplinary Graduate Program in Informatics, University of Iowa
- ² Department of Business Analytics, University of Iowa

What is collaboration?

- Important component of teamwork
- Can boost work productivity and improve team performance by putting together individuals' disciplines, expertise, and background
- Example
 - Academic collaboration
 - Business collaboration
 - Sports collaboration

Collaboration from network perspective

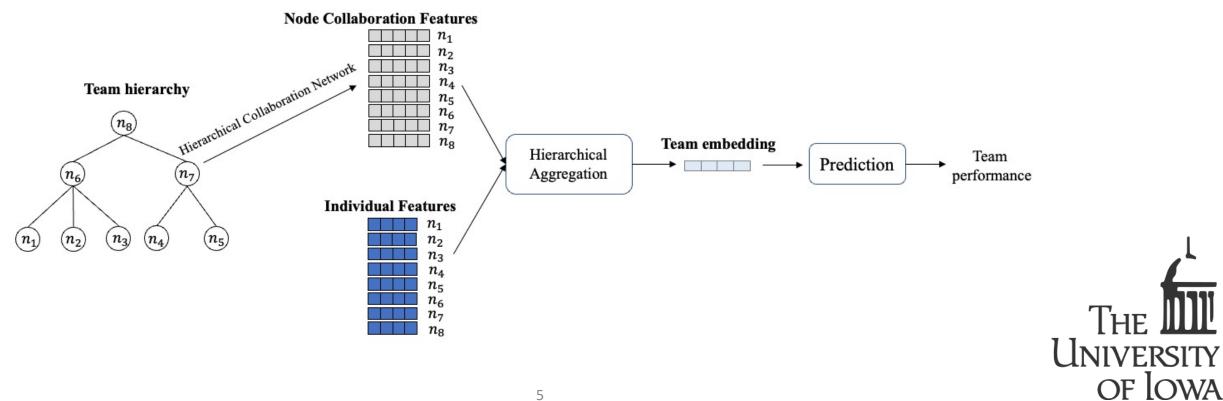
- View collaborations from the network perspective
- Understanding collaboration network patterns associated with team performance helps decision-making
 - Ex) Sports team lineup decision, hire for a project team
- Existing studies that predict team performance on collaboration networks
 - Use average structural centrality of team members as features
 - Use dynamics of historical team performance as features
- Limitations of existing works
 - Manual feature engineering is required to represent the whole team
 - Do not consider the hierarchical structures in teams

Proposed method: Hierarchy2vec

- Goal: Predict team performance based on team collaborations
- Contributions:
 - 1. Capture the hierarchical relationships among team members
 - 2. Preserve team members' characteristics and collaboration structures in a team
 - 3. Adopt network embedding approaches for learning representations of team members and teams
 - 4. Predict future team performance

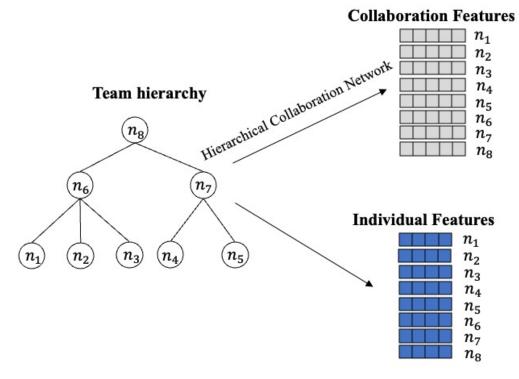
Hierarchy2vec Architecture overview

- (1) Given a team hierarchy, generate node features using hierarchical collaboration network
- (2) Aggregate node features in a hierarchical way using an end-to-end architecture to learn team representations
- (3) Predict team performance



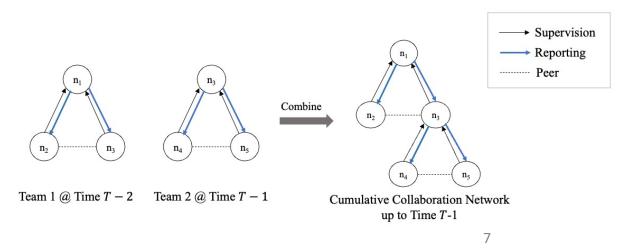
Generating node features

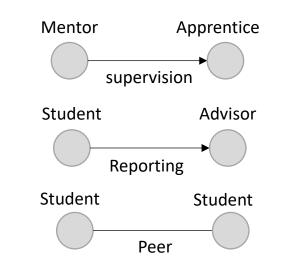
- Construct team hierarchy with individual team members in the same team
- Generate features for every team member
- Features include:
 - (1) Individual features
 - (2) Collaboration features



Generating node features

- (1) Individual features: represent individual characteristics
 - Individual expertise, skills, or previous performance of team members
- (2) Collaboration features: represent previous collaboration experience
 - Construct hierarchical collaboration network using team members' prior collaborations
 - Nodes: team members (e.g., scholars, sports players)
 - Edges: three types based on hierarchical structure
 - Supervision ties (directed) -- "Supervising" relationships
 - Reporting ties (directed) -- "reporting to" or "working for" relationships
 - Peer ties (undirected) -- colleagues working for the same supervisor
 - Combine all collaborations for cumulative collaboration network

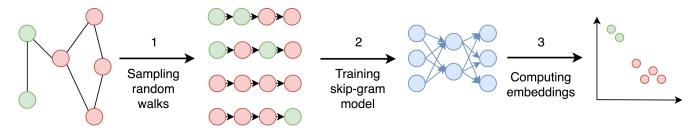




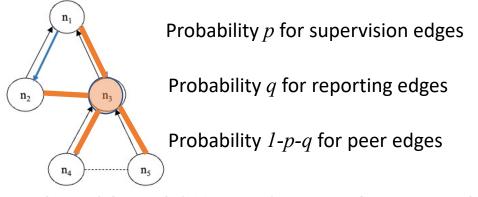
Generating node features

(2) Collaboration features

- Learn node embeddings on the cumulative hierarchical collaboration network
- Extend DeepWalk (Perozzi et al., 2014) model to learn node similarities with hierarchy in mind.
- Vanilla DeepWalk: unbiased random walk



- Our model: hierarchically biased random walk
 - Give different probabilities (unnormalized probabilities *p*, *q*, and *1*-*p*-*q*) for supervision, reporting and peer ties

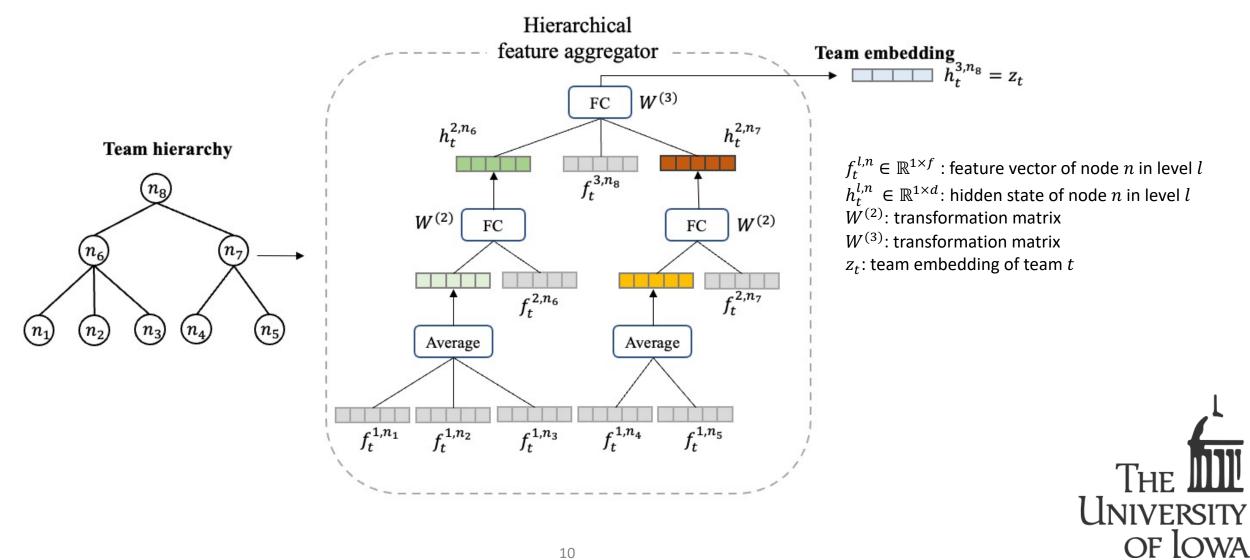


Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 701-710).

Hierarchical node feature aggregation

- Aggregate node features of all team members to generate team-level representations
- Give more importance to team members at the upper hierarchy
- Aggregation starts from the lowest level of team's hierarchy up to the top level (i.e., bottom-up fashion)
- The final features aggregated at the top-level become the embedding of teams @ time T.

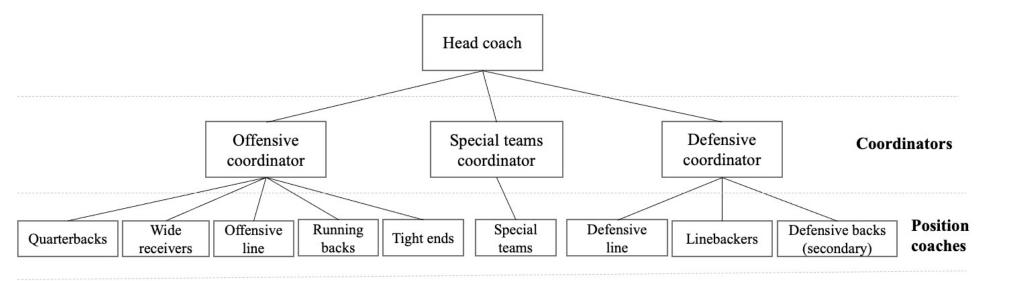
Hierarchical node feature aggregation



Experiments

Data

- Dataset of coaches and teams in the National Football League (NFL)
- Seasons between 2002 and 2019
- Only considered qualified coaching roles within each team (head coach, coordinators, position coaches)
 - Assistant, Associate, Intern, Quality control positions are not considered.
- Team hierarchy: three levels of hierarchy in NFL coach collaboration
 - First level (bottom): position coaches responsible for players at one specific position
 - Second level: coordinators (defensive / offensive / special teams) responsible for one area of team's play
 - Third level (top): head coach greatest authority and responsibility



11

UNIVERSITY

Experiments

Experiment design

- Experimented on predicting failures.
 - Failure of a team: team failed to win 50% of its regular season games or head coach was fired in the middle of the season.
 - We generated node features using data up to year y-1 to predict team failures in year y.
- Train: 14 seasons (2002-2015) / Validation: 2 seasons (2016-2017) / Test: 2 seasons (2018-2019)

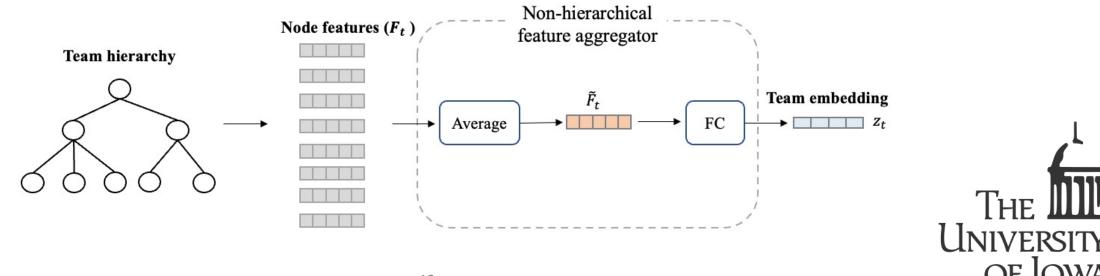
	Training	Validation	Test
Number of coaching teams	448	64	64
Number of coaching teams with failures	196	27	33
Number of nodes	5,493	806	804
Number of edges	6,817	1,065	1,154

Table 1: NFL collaboration network statistics

Experiments

Experiment design

- Individual features: prior achievements as NFL coach
 - Total years of NFL coaching career
 - Best winning percentage during the previous 5 seasons
 - Avg. winning percentage during the previous 5 seasons
- Collaboration features: node embeddings learned from previous hierarchical collaboration network
- Baseline models
 - Collaboration features using DeepWalk (unbiased random walk)
 - Aggregation of coach features in non-hierarchical way
 - Average all node features and a FC layer transforms into a team embedding size.



Results

- Performed 10 repeated model trainings.
- Evaluation metric: Averaged AUCs over 10 test predictions.
- Feature set 1: Individual features
- Feature set 2: Individual features + Collaboration features (DeepWalk)
 - Used unbiased random walk for traversing nodes
- Feature set 3: Individual features + Collaboration features (Hierarchical Walk)
 - Probability ratio of traversing supervision, peer, and reporting ties = 1:3:5

Table 2: Model comparisons

	Non-hierarchical aggregation	Hierarchical aggregation
Feature set 1	0.572	0.631
Feature set 2 (DeepWalk)	0.585	0.597
Feature set 3 (Hierarchical walk)	0.600	0.653

Conclusion

- This work proposed hierarchy2vec that learns graph representations designed for teams' hierarchical structures.
- Leveraged hierarchically biased walk
- Aggregated node features in a hierarchical way using end-to-end team embedding model
- Future work
 - Robustness check for different model parameters and experiment settings
 - Consider the recency and strength of collaboration ties while learning collaboration features
 - Experiment on different data with hierarchical structures for generalizability

