INFORMS Annual Meeting 2019

Link Predictions for Social Networks in Online Health Communities

Sulyun Lee¹, Hankyu Jang¹, Kang Zhao¹, Michael S. Amato², Amanda L. Graham² The University of Iowa¹, Truth Initiative²

Interdisciplinary Graduate Program in Informatics

Department of Computer Science Department of Business Analytics

Motivation

Online Health Community (OHC)

- OHC enables social networking
 - Similar health concerns
 - Share health info and emotionally support
- Emergence of the Internet results in high reliance on OHCs.
- Recommending users improves the OHC systems.

Motivation

Multi-Relational Link Prediction

- Networking is a key to a better health outcome
- Can we utilize users' communication data for better networking?
 - Generate a network from each channel (**multi-relational network**)
 - Recommend friends to users that share similar interests utilizing information from network (link prediction)

Better Networking Better Engagement

Better health Outcome

Data & Setup

Data

- Source: BecomeAnEx OHC for smoking cessation
- 6 years of users' interaction (2010 2015) in 4 channels
 - Blog posts & comment (BC)
 - Group discussion (GD)
 - Message board (MB)
 - Private messages (PM)

Data & Setup

Communication Network

- Four subnetworks: one undirected network for each channel
 - $G_{BC}, G_{GD}, G_{MB}, G_{PM}$
- One aggregated network (G_{AGG})
- Both seekers and providers can benefit from communications
- 32 consecutive weeks were considered

	G_{BC}	G_{GD}	G_{MB}	G_{PM}	G_{AGG}
Number of nodes	1516	899	2953	369	3694
Number of edges	22706	1418	8873	666	27837
Average degree	29.955	3.155	6.009	3.610	15.071
Maximum degree	1076	111	756	83	1303
Degree standard deviation	65.590	5.440	27.723	7.739	52.710
Clustering coefficient	0.575	0.016	0.185	0.133	0.312
Number of connected components	2	45	20	35	33
Assortativity	-0.281	-0.096	-0.342	-0.210	-0.283

^aThe graphs are constructed with the user interactions that occurred anytime during the weeks from 50 to 81.

Data & Setup

Experiment Setup

- Task:
 - Predict the next week's newly formed network ties, no matter which channel
 - Leverage the current week's network structures
- A sliding window approach:

[Supervised Link Prediction]

- Instances: Pairs of users in the G_{Agg} for week t
- Features: Similarity scores computed for the pair of user for week t
- Labels: Binary 1: if the pair is connected in the G_{Agg} for week t+1 0: otherwise

Features (Similarity Measures)

Neighbor-based

Jaccard's coefficient

- Idea: penalizing nonshared neighbor

Symbol	Definition
τ(x)	Neighbor of x

$$score_{JC}(x, y) = \frac{3}{5}$$

P. Jaccard. "Etude comparative de la distribution florale dans une portion des alpes et des jura", Bulletin de la Societe Vaudoise des Sciences Naturelles 1901

Features (Similarity Measures)

Neighbor-based

Jaccard's coefficient

 $\frac{|\tau(x)\cap\tau(y)|}{|\tau(x)\cup\tau(y)|}$

- Idea: penalizing nonshared neighbor
- Adamic Adar $\sum_{z \in \tau(x) \cap \tau(y)} \frac{1}{\log k(z)}$
 - Idea: penalizing 'shared neighbor' that has many neighbors

Symbol	Definition						
τ(x)	Neighbor of x						
Z	Common neighbor of x and y						
k(z)	Degree of <i>z</i>						

l Inive OF LOWA

P. Jaccard. "Etude comparative de la distribution florale dans une portion des alpes et des jura", Bulletin de la Societe Vaudoise des Sciences Naturelles 1901

L. A. Adamic, E. Adar, "Friends and neighbors on the Web," Social Networks 03

Features (Similarity Measures)

Neighbor-based

Jaccard's coefficient

 $\frac{|\tau(x)\cap\tau(y)|}{|\tau(x)\cup\tau(y)|}$

- Idea: penalizing nonshared neighbor
- Adamic Adar $\sum_{z \in \tau(x) \cap \tau(y)} \frac{1}{\log k(z)}$
 - Idea: penalizing 'shared neighbor' that has many neighbors
- Preferential attachment $k(x) \times k(y)$
 - Idea: richer gets richer

Symbol	Definition					
τ(x)	Neighbor of x					
Z	Common neighbor of x and y					
k(z)	Degree of <i>z</i>					

 $score_{PA}(x, y) = 5 \times 3$

P. Jaccard. "Etude comparative de la distribution florale dans une portion des alpes et des jura", Bulletin de la Societe Vaudoise des Sciences Naturelles 1901

L. A. Adamic, E. Adar, "Friends and neighbors on the Web," Social Networks 03

A. L. Barabasi, H Jeong, Z Neda et al, "Evolution of the social network of scientific collaborations", Physica A 02

M. Mitzenmacher, "A briefhistory of generative models for power law and lognormal distributions", Internet Mathematics 2004

Methods

Baseline vs. MRLP (Proposed Method)

- Baseline features extract 3 similarity measures (JC, AA, PA) for each of the 4 subnetworks and aggregated network
 - F_{BC} : 3 similarity measures from G_{BC}
 - F_{GD} : 3 similarity measures from G_{GD}
 - F_{MB} : 3 similarity measures from G_{MB}
 - F_{PM} : 3 similarity measures from G_{PM}
 - F_{Agg} : 3 similarity measures from G_{Agg}
- MRLP considers a social network as multi-relational by stacking F_{BC} , F_{GD} , F_{MB} , F_{PM} (12 features in total)

 $- F_{ALL}: F_{BC} + F_{GD} + F_{MB} + F_{PM}$

Methods

Preformance Measures

- Classifiers
 - Random Forest, Logistic Regression, AdaBoost, Neural Network
- Evaluation Measure
 - Precision, Precision@k
 - Goal is to recommend top future links with high accuracies
 - Normalized discounted cumulative gain (nDCG@k)
 - It's important to rank links that occurred higher than those that did not occur

OF IOWA

Results

Baseline vs. MRLP

Motric	Classifion		MRLP				
Wiethic	Classifier	F_{AGG}	F_{BC}	F_{GD}	F_{MB}	F_{PM}	F_{ALL}
Precision	Random Forest	0.249	0.229	0.000	0.114	0.070	0.282
	Logistic Regression	0.466	0.418	0.000	0.315	0.084	0.445
	AdaBoost	0.439	0.426	0.000	0.207	0.115	0.388
	Neural Network	0.511	0.491	0.000	0.325	0.052	0.551
	Random Forest	0.400	0.300	0.008	0.157	0.038	0.370
DDEC@10	Logistic Regression	0.617	0.583	0.024	0.380	0.121	0.640

MRLP

Considering features from each network

Baseline

Considering a single network or aggregated network

PREC@20	Logistic Regression	0.603	0.535	0.016	0.328	0.102	0.600
	AdaBoost	0.513	0.432	0.008	0.247	0.028	0.463
	Neural Network	0.597	0.533	0.008	0.318	0.057	0.610
nDCG@20	Random Forest	0.405	0.301	0.007	0.124	0.045	0.351
	Logistic Regression	0.619	0.567	0.019	0.351	0.117	0.622
	AdaBoost	0.507	0.432	0.012	0.248	0.039	0.470
	Neural Network	0.610	0.561	0.008	0.334	0.070	0.624

^aValues that are in **bold** denote the largest value for each evaluation metric.

Can we do better?

- *F_{com}* : Community-based features
 - Modularity maximization (4 features, each from G_{BC} , G_{GD} , G_{MB} , G_{PM})
 - Label propagation (4 features, each from G_{BC} , G_{GD} , G_{MB} , G_{PM})
- *F_{EMB}* : Embedding-similarity features
 - DeepWalk (4 features, each from G_{BC} , G_{GD} , G_{MB} , G_{PM})
- *F_{TEX}*: Text-similarity features
 - Latent Dirichlet allocation (LDA, 3 features, each from G_{BC} , G_{GD} , G_{MB})

Community-Based Feature (F_{COM})

Idea: Two nodes are similar if they belong to the same community

Modularity maximization

$$s_{xy} = \begin{cases} 1, & \text{if } x, y \in C_i, \ (1 \le i \le k_{CM}) \\ 0, & \text{otherwise} \end{cases}$$
Nodes that are in same community

Label propagation

$$s_{xy} = \begin{cases} 1, & \text{if } x, y \in C_i, \ (1 \le i \le k_{CLP}) \\ 0, & \text{otherwise} \end{cases}$$

Number of communities detected using label propagation

using modularity maximization

15 / 24

A. Clauset, M. EJ. Newman, and C. Moore, "Finding community structure in very large networks." PRE 04G. Cordasco and L. Gargano, "Community detection via semi-synchronous label propagation algorithms." BASNA 10

Embedding-Similarity Feature (F_{EMB})

- Idea: Two nodes with similar representations are close to each other
- How to learn representation of nodes in the graph?
 - DeepWalk

Embedding-Similarity Feature (F_{EMB})

- Idea: Skip-gram (word embedding) Learn a vector representation of word such that nearby words would have similar representation
- Input: G = (V, E)
- Output: $\Phi: v \in V \to \mathbb{R}^{|V| \times d}$

DeepWalk

OF IOWA

Embedding-Similarity Feature (F_{EMB})

After the embedding is learned, compute cosine similarity of the two vectors

 $s_{xy} = \cos(V_x, V_y)$

Nodes that have similar embedding have higher score

Graph embedding

Text-Similarity Feature (F_{TEX})

- Idea: Users who care about similar topics in an OHC may have a higher chance of interacting with each other
- Compute text similarity among users' posts as a measure of similarity

Text-Similarity Feature (F_{TEX})

- Combined posts across 30 weeks
- Applied latent Dirichlet allocation (LDA)
 - Each post has a topic distribution (30 dimensional vector)
 - If a user posted *n* posts in a channel for a week, then the topic distribution is averaged over *n* topic distributions
- Two users have similar topic distributions if they expressed interest in similar topics with each other

$$s_{xy} = cos(A_x, A_y)$$
, where $A_i = \frac{\sum_{p=1}^n T_{ijtp}}{n}$ - user *i* - channel *j*

- week **t**
- number of posts n

Results

MRLP vs. MRLP + more features

 F_{ALL} : $F_{BC} + F_{GD} + F_{MB} + F_{PM}$ F_{COM} : Community-based feature F_{EMB} : Embedding-similarity feature F_{TEX} : Text-similarity feature

Table 3: Performance of additional features on MRLP

Motric	Classifior	MRLP	MRLP+More Feature Sets						
Metric	Classifier	F_{ALL}	$F_{ALL} \\ + F_{COM}$	$F_{ALL} \\ + F_{EMB}$	$F_{ALL} \\ + F_{TEX}$	$F_{ALL} \\ +F_{COM} \\ +F_{EMB}$	$F_{ALL} + F_{COM} + F_{EMB} + F_{TEX}$		
	Random Forest	0.282	0.290	0.318	0.308	0.323	0.338		
Dragigion	Logistic Regression	0.445	0.463	0.446	0.448	0.462	0.458		
FTECISION	AdaBoost	0.388	0.387	0.389	0.386	0.385	0.376		
	Neural Network	0.551	0.558	0.584	0.516	0.462	0.541		
	Random Forest	0.370	0.373	0.367	0.437	0.360	0.433		
DDFC@10	Logistic Regression	0.640	0.637	0.650	0.623	0.640	0.633		
PREC@10	AdaBoost	0.440	0.480	0.410	0.487	0.463	0.477		
	Neural Network	0.640	0.597	0.637	0.627	0.607	0.633		
	Random Forest	0.366	0.380	0.385	0.467	0.349	0.449		
»DCC@10	Logistic Regression	0.655	0.650	0.656	0.642	0.662	0.641		
UDCG@10	AdaBoost	0.460	0.494	0.433	0.500	0.480	0.488		
	Neural Network	0.648	0.620	0.663	0.629	0.623	0.649		
	Random Forest	0.347	0.358	0.367	0.382	0.378	0.373		
DDEC@90	Logistic Regression	0.600	0.622	0.607	0.580	0.613	0.602		
FREC@20	AdaBoost	0.463	0.453	0.463	0.497	0.450	0.475		
	Neural Network	0.610	0.573	0.607	0.577	0.572	0.570		
nDCG@20	Random Forest	0.351	0.368	0.379	0.417	0.366	0.400		
	Logistic Regression	0.622	0.635	0.623	0.604	0.635	0.616		
	AdaBoost	0.470	0.471	0.463	0.503	0.465	0.484		
	Neural Network	0.624	0.595	0.633	0.592	0.593	0.600		

^aValues that are in **bold** denote the largest value for each evaluation metric.

Embedding effects in each channel

Effects of channels for MRLP+Embedding

 Drop the embedding feature generated by each channel to compare the embedding effects of each channel

BC : Blog posts & CommentsGD : Group DiscussionMB : Message BoardPM : Private Messages

Metric	Classifior	MRLP+Emb	MRLP+Emb for three channels					
Wiethe	Classifier	F_{ALL}	F_{ALL}	F_{ALL}	F_{ALL}	F_{ALL}		
		$+F_{EMB}$	$+F_{EMB-BC}$	$+F_{EMB-GD}$	$+F_{EMB-MB}$	$+F_{EMB-PM}$		
Precision	Neural Network	0.584	0.528	0.543	0.551	0.538		
PREC@10	Logistic Regression	0.650	0.657	0.643	0.647	0.650		
nDCG@10	Neural Network	0.663	0.636	0.618	0.626	0.659		
PREC@20	Logistic Regression	0.607	0.607	0.603	0.607	0.615		
nDCG@20	Neural Network	0.633	0.604	0.595	0.599	0.625		

^aValues that are in bold denote the best performing value for $F_{ALL} + F_{EMB}$.

^bValues that are in red denote the highest value when the embedding feature for a channel is dropped.

 $^{\rm c}{\rm Values}$ that are in blue denote the lowest value when the embedding feature for a channel is dropped.

 The embedding similarity in group discussion channel provide more information that could not capture in F_{ALL}.

Discussions and Conclusion

- Our MRLP method of utilizing multi-relational information outperforms baseline methods
- Embedding-similarity feature further improved the performance as well as community-based features
- Text-similarity does not help the predictions \rightarrow future work
- Implications for the design and management of OHCs
 - Recommend other users' blog posts and encourage to participate in group discussions
 - Recommend users to access other users' wall and send direct messages if belong to the same community
 - Allow users to communicate with others not in the same community but have the high similarity score in embedding

Thank you! Questions?

Sulyun Lee: sulyun-lee@uiowa.edu Hankyu Jang: hankyu-jang@uiowa.edu Kang Zhao: kang-zhao@uiowa.edu

