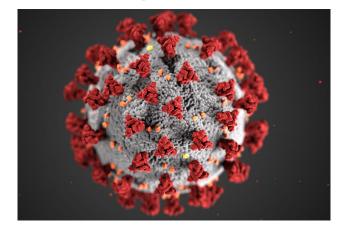
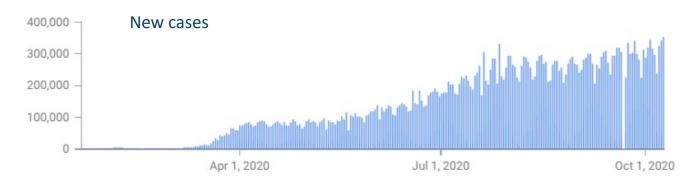
INFORMS Annual Meeting 2020


Understanding the Research Collaborations During COVID-19 Pandemic


Sulyun Lee, Kang Zhao, Ning Li

Presenter: Sulyun Lee

COVID-19 Pandemic

- COVID-19 was first identified in Wuhan, China in December, 2019.
- 214 countries and territories around the world have reported cases.
- Total of 37,964,503 confirmed cases around the world (up to date).
- Still affecting the world.

Global research on COVID-19

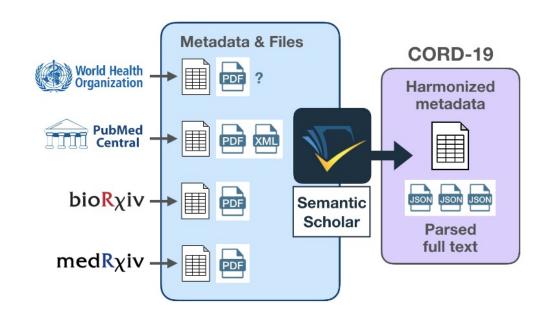
- COVID-19 has attracted global researchers' attentions.
- Many articles are released around the world from different fields.
- Example: medication, biology, psychiatric, social, economic, etc.

Research goals

- Goal: Observe how researchers collaborate each other during COVID-19 pandemic.
- Research Questions:
 - 1. What factors contribute to the academic recognition of COVID-19 research papers?
 - 2. What factors contribute to the public recognition of COVID-19 research papers?
 - 3. What diversity can we observe from the collaboration of COVID-19 research papers?

Research goals

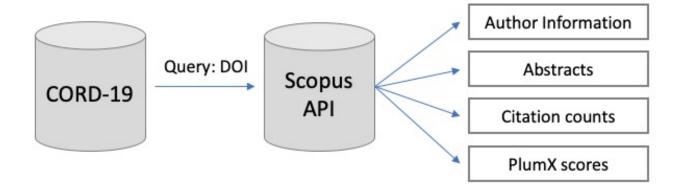
- How can we measure the academic and public recognition of research papers?
- Academic recognition: measured by citation counts
- Public recognition: measured by PlumX metrics **PLUMX**


- PlumX metrics are the metrics that measure the scholarly research output with 5 categories.
- "Mentions" category measures how people are engaged with the research through news articles or blog posts.
- Example:
 - Number of blog posts written about the article
 - Number of comments made in Reddit, Youtube, etc. about the article
 - Number of gists in the GitHup repository
 - Number of news articles about the article
 - Number of references in Wikipedia

Data and Setup

Data Source: CORD-19

- COVID-19 Open Research Dataset Challenge (CORD-19)
- Provided by the White House and several leading research groups.
- Contains articles about COVID-19 and related historical coronaviruses from different sources (PMC, WHO, bioRxiv, medRxiv).


Data and Setup

Data Source: Scopus

• Scopus: Elsevier's large database of scholarly content

Scopus°

• Retrieved the author information, abstracts, citation counts, and PlumX scores

Data and Setup

Setup

- Used articles published between Jan. 01, 2020 and Sep. 03, 2020.
- Excluded articles with zero or one author.
- Excluded preprints and news/commentary articles.
- Gathered 32,281 COVID-19 related papers for analysis.

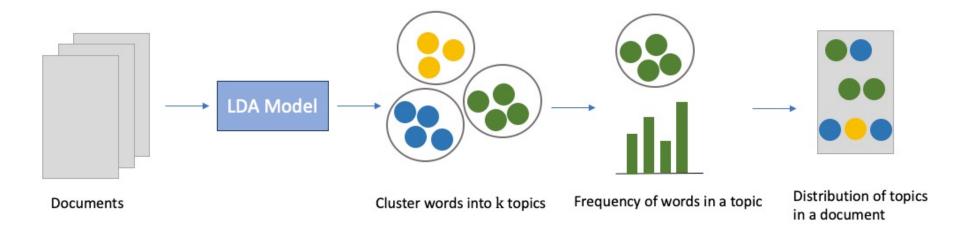
Modeling design

Independent Variables

- Diversity of authors' previous research topics
- Rate of new coauthorships
- Diversity of authors' h-index
- Cultural diversity of authors

Control Variables

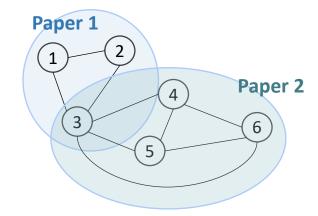
- Maximum h-index of authors
- Research topics of COVID-19 papers
- Time since the publication dates
- Rate of coauthors in the practical affiliations, such as hospitals and clinics
- Team size


Dependent Variables

- Citation counts
- Number of mentions in PlumX metrics

Independent variables

- Diversity of authors' previous research topics
 - Discover how authors from different fields form research collaborations.
 - Used LDA topic modeling on titles and abstracts of authors' previous publications.
 - 30 topics with the highest coherence score.



Independent variables

Rate of new coauthorships

- Discover if new collaborations were made in the multi-author papers.
- Considered the collaborations as the fully connected sub-network.
- Computed the rate of newly formed edges in the COVID-19 collaboration network.

- Diversity of authors' h-index
 - Discover the disparity of authors' h-index in a paper.
 - Used gini coefficients to estimate the disparity.

Cultural diversity of authors

- Discover the diversity of authors' cultural background.
- Based on the authors' affiliation countries.
- Computed the similarity of authors' affiliation countries using Hofstede's culture scores.

Control variables

- Maximum h-index of authors
 - Control the effects of a prestiged author with highesth-index
- Research topics of COVID-19 papers
 - Control the effects of specific research fields gaining more attentions.
 - Used the LDA topic modeling on COVID-19 papers' titles and abstracts
 - 20 topics with the highest coherence score.
- Time since the publication dates
 - Papers with longer publication time might have gained more academic and public recognitions.
 - Computed the number of days.

Control variables

- Rate of coauthors in the practical affiliations
 - Control the effects of authors' affiliation types.
 - Computed the rate of authors from hospitals and clinics.
- Team size
 - Control the effects of collaborator size.
 - Computed the total number of authors in a paper.

Modeling

- Used linear regression model.
- Log transformed the highly skewed variables
 - Maximum h-index and team size
- Removed the variables with high variance inflation factor (VIF) for multi-collinearity.
- Two separate models for citation counts and PlumX mentions.

Results

Regression coefficients

1) Citation counts

Topic-13 Model, predict, network

Topic-14 Express, level, mother, infant

Topic-16
Drug, treatment, cancer, patient, antivirus

Topic-17 Food, water, method, image, technology

	Coefficient	t -statistic	P-value
Intercept	0.6522	120.875	< 0.001
Similarity of authors' previous publications	-0.089	-14.449	< 0.001
Rate of new coauthorships	0.085	12.107	< 0.001
Diversity of authors' h-index	-0.082	-11.677	< 0.001
Cultural similarity of authors	-0.011	-1.919	0.055
Maximum h-index of authors	0.129	21.143	< 0.001
Time since the publication dates	0.437	77.73	< 0.001
Team size	0.099	14.578	< 0.001
Rate of coauthors in practical affiliations	0.041	7.43	< 0.001
Topic distribution-1	-0.004	-0.556	0.579
Topic distribution-2	-0.008	-1.305	0.192
Topic distribution-3	-0.012	-2.06	0.039
Topic distribution-4	-0.010	-1.624	0.104
Topic distribution-5	-0.005	-0.861	0.389
Topic distribution-6	-0.018	-3.308	0.001
Topic distribution-7	0.027	4.207	< 0.001
Topic distribution-8	-0.067	-10.344	< 0.001
Topic distribution-9	-0.006	-0.995	0.32
Topic distribution-10	0.006	1.098	0.272
Topic distribution-11	0.008	1.451	0.147
Topic distribution-12	0.024	3.385	0.001
Topic distribution-13	-0.041	-6.601	< 0.001
Topic distribution-14	-0.041	-7.289	< 0.001
Topic distribution-15	-0.008	-1.366	0.172
Topic distribution-16	-0.021	-3.639	< 0.001
Topic distribution-17	-0.036	-6.024	< 0.001
Topic distribution-18	0.008	1.29	0.197

Topic-6

Transplant, medicine, effect, kidney, disease

Topic-7

Patient, infect, respiratory, treatment, syndrome

Topic-8

Research, data, technology, data

Topic-12

Outbreak, data, infect, number, epidemic, spread

Results

Regression coefficients

2) PlumX Mention counts

	Coefficient	t -statistic	P-value
Intercept	0.226	56.631	< 0.001
Similarity of authors' previous publications	-0.023	-5.101	< 0.001
Rate of new coauthorships	0.047	9.024	< 0.001
Diversity of authors' h-index	-0.032	-6.257	< 0.001
Cultural similarity of authors	0.005	1.279	0.201
Maximum h-index of authors	0.103	23.041	< 0.001
Time since the publication dates	0.056	13.718	< 0.001
Team size	0.091	18.092	< 0.001
Rate of coauthors in practical affiliations	-0.028	-6.767	< 0.001
Topic distribution-1	0.001	0.27	0.787
Topic distribution-2	0.0004	0.096	0.923
Topic distribution-3	0.004	0.858	0.391
Topic distribution-4	0.004	0.85	0.395
Topic distribution-5	0.001	0.23	0.818
Topic distribution-6	-0.004	-1.056	0.291
Topic distribution-7	0.013	2.733	0.006
Topic distribution-8	-0.016	-3.323	0.001
Topic distribution-9	-0.0002	-0.04	0.968
Topic distribution-10	0.0005	0.126	0.9
Topic distribution-11	0.005	1.102	0.271
Topic distribution-12	0.009	1.696	0.09
Topic distribution-13	-0.009	-1.886	0.059
Topic distribution-14	-0.004	-1.012	0.312
Topic distribution-15	0.002	0.46	0.646
Topic distribution-16	-0.004	-0.922	0.356
Topic distribution-17	-0.004	-0.883	0.377
Topic distribution-18	0.001	0.109	0.913
Topic distribution-19	-0.008	-1.816	0.069

Topic-7

Patient, infect, respiratory, treatment, syndrome

Topic-8

Research, data, technology

Future works

- Add interaction terms to see any interacting effects between variables.
- Prediction task of how collaborations will end up, given author diversity.
- Find out any network structural properties that are found in author collaborations.

Discussion & Conclusions

- Author collaborations from different research areas decrease both academic and public attentions.
- Introduction to new collaborations increase both the academic and public attentions.
- Disparity of authors' prestige decrease both academic and public attentions.

